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Abstract. A method to construct Hamiltonian theories for systems of both ordinary and partial
differential equations is presented. The knowledge of a Lagrangian is not at all necessary to
achieve the result. The only ingredients required for the construction are one solution of the
symmetry (perturbation) equation and one constant of motion of the original system. It turns
out that the Poisson bracket structure for the dynamical variables is far from becoming uniquely
determined by the differential equations of motion. Examples in classical mechanics as well as
in field theory are presented.

Hamiltonian methods are widely used in connection with problems in classical, quantum and
statistical mechanics, fluid dynamics, optics, solid state, molecular, atomic, nuclear, particle
and plasma physics, in both classical and quantum field theoretical systems. Quantization
schemes as well as group theoretical symmetry methods are examples of subject matters
in which Hamiltonian structures are useful. Hamiltonian theories are usually constructed,
starting from the knowledge of a Lagrangian, by well established methods for both the
cases of regular and singular Lagrangians [1–4]. For different reasons, one may try to
quantize or to construct Hamiltonian structures for classical systems of differential equations
without recourse to a Lagrangian [5–7]. Several authors have been successful in creating
Hamiltonian theories from scratch for different examples, mostly in fluid dynamics (an
excellent review is presented in [8]) and in field theory [9], but no general method seems
to exist for constructing a Hamiltonian structure starting from the equations of motion only,
without using at all either the explicit form or the existence of a Lagrangian formulation
for the system at hand.

The purpose of this paper is to present a general technique to construct Hamiltonian
theories starting from the equations of motion, using one symmetry transformation and one
constant of motion, without recourse to the Lagrangian of the system of equations, which
may even fail to exist. This method has even allowed us to find a Hamiltonian description
for the heat equation [10] which has been believed to be non-Hamiltonian for some time
[11]. A completely different approach has been used to construct a quantum model for a
non-Lagrangian cosmological model in [12], and infinitely many Hamiltonian structures of
the spinning top in [13].

Let us start by stating what it is usually meant by a Hamiltonian theory. Consider an
autonomous first-order differential system,

dxa

dt
= f a(xb) a, b = 1, . . . , N. (1)
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Of course, a differential system of any order can be easily cast in first-order form by defining
extra variables in the standard textbook fashion. A Hamiltonian structure for (1) is defined
in terms of an antisymmetric Poisson matrixJab(xc) and HamiltonianH(xc) which satisfy

Jab = −Jba a, b, c, . . . = 1, . . . , N (2)

Jab
,dJ

dc + Jbc
,dJ

da + J ca
,dJ

db ≡ 0 (3)

and

Jab ∂H

∂xb
= f a. (4)

The Poisson bracket between any two dynamical variablesA(xa) andB(xb) is defined by

[A,B] = ∂A

∂xa
Jab ∂B

∂xb
(5)

and satisfies all the usual algebraic and differential properties as can be easily inferred from
the antisymmetry condition (2), the Jacobi identity (3), and the definition (5).

If, in addition,

detJab 6= 0 (6)

is required, then the Poisson matrix is regular. It is important to remark that, sometimes,
condition (6) cannot be met. IfN is odd, as happens for Euler’s equations, (6) is never
satisfied because of (2) as can be seen for instance in [13] and in one of the examples
below. In Dirac theory, condition (6) for Dirac brackets is not satisfied because there are
dynamical entities, called second class constraints, which have vanishing Dirac brackets with
any variable [3]. In fluid dynamics, the functions which have vanishing Poisson brackets
with any dynamical variable are called ‘Casimir functions’, inspired on the well known
group theoretical terminology for operators which commute with any element of the group
[8, 14]. Therefore, it is convenient to adopt a flexible attitude regarding condition (6), and
take conditions (2), (3), and (4) as defining a Hamiltonian theory. Of course, the usual
textbook Hamiltonian structures satisfy all of them.

It is straightforward to prove that conditions (2) and (4), imply thatH(xa) is a time-
independent constant of the motion of system (1) defined by the condition

∂H

∂xa
f a = LfH = 0 (7)

which can be equivalently stated by saying that the Lie derivative ofH alongf vanishes.
A brief account on Lie derivatives may be found in [15].

Let us now derive the symmetry (perturbation) equation of (1). (For a detailed
discussion, see [16].) Consider the transformation

x̃a = xa + εηa(xb, t) (8)

whereεηa(xb, t) is a small perturbation which maps solutions of (1) into solutions of the
same equation, up to first order inε. The equation that the perturbation vectorη satisfies is

∂tη
a + ηa,bf

b − f a,bη
b = 0 (9)

or

(∂t + Lf )ηa = 0. (10)

It is not difficult to prove thatK, the deformation ofH alongη, defined by

K ≡ ∂H

∂xa
ηa = LηH (11)
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is also a constant of motion for the same system, ifη satisfies equation (10). By the same
token, a new symmetry transformationη̄ which satisfies equation (10) can be constructed
using a symmetry transformationη and a constant of motionK by

η̄a = ηa

K
. (12)

A detailed account of these results may be found in [17].
Let us now compute the Lie derivative ofJab alongf

LfJab = Jab
,cf

c − Jacf b,c − J cbf a,c. (13)

It is a straightforward exercise to prove that

LfJab = 0 (14)

using equations (2)–(4). Note that equation (6) is not needed in the proof. Therefore, a
Poisson matrix must have vanishing Lie derivative alongf . Nevertheless, this condition
is not sufficient to fulfil simultaneously the requirements (2)–(4). To construct a Poisson
matrix Jab, let us start by considering an antisymmetric matrix according to the following
ansatz

Jab = f aηb − f bηa (15)

whereη satisfies (9) and has been normalized using (12) in such a way thatJab fulfil (4)
identically. Of course, condition (2) is trivially met. The Jacobi identity (3) imposes the
following condition

JbcLf ηa + J caLf ηb + JabLf ηc = 0 (16)

which is satisfied by a particular, time-independent symmetry vectorη0 which solves (10)
defined by

∂tη
a
0 = −Lf ηa0 = 0. (17)

A more interesting solutionη1 is given by the condition

∂tη
a
1 = −Lf ηa1 = λf a (18)

which will be most useful in many instances. Note that both solutions produce Poisson
matrices with vanishing Lie derivatives alongf .

We have thus constructed a Hamiltonian structure for (1) based on knowledge of just
one symmetry vector (eitherη0 or η1) and only one constant of motion,H , of the system
under consideration (assuming a non-vanishingK, which can be easily achieved as will be
seen in the examples). A few comments seem in order. First, a solution similar to the one
described by (18), with the Lie derivative of the symmetry vector alongf proportional to
the symmetry vector itself, although it satisfies the Jacobi identity, is incompatible with (4).
Second, the rank of the Poisson matrix just derived is two. Therefore, it will be, in most
cases, singular. A procedure to enlarge its rank will be described below. Third, it is obvious
that the method we have presented will, in general, yield a Hamiltonian structure written
in terms of non-canonical coordinates. Nevertheless, that is the most we can hope for
in the case of non-Lagrangian systems (which are always described by non-commutative
geometry). This problem is dealt with in some detail in [7]. Fourth, even though this
procedure differs from the usual one for the case of Lagrangian systems, it may sometimes
reproduce the well known results in terms of canonical coordinates, as is shown in one of
the examples below. Let us now consider some examples. The systems may be completely
described by the evolution vectorf , or the equations of motion written in its first-order
version. The Hamiltonian structure may be completely determined by one constant of
motion, the HamiltonianH , and one symmetry vectorη0 or η1. Sometimes, we will need
to make use of the normalization given in (12).
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Example 1. One-dimensional monomial force. This example is defined by the equations
of motion

f 1 = x2 f 2 = −c(n+ 1)(x1)n (19)

while a Hamiltonian

H = (x2)2

2
+ c(x1)n+1 (20)

and one symmetry transformation are given by

η1 = x1 + n− 1

2
tf 1 η2 = n+ 1

2
x2 + n− 1

2
tf 2. (21)

This is, of course, a very trivial example, which, nonetheless, shows how the scheme
presented here can reproduce the usual results. In this case, the Poisson matrix is regular.
The harmonic oscillator and the free particle are special cases in this example. Note that this
treatment can be extended to any number of dimensions provided the force is a homogeneous
function of degreen in the coordinates.

Example 2. Euler’s top. Consider the equations of motion of Euler’s top

dLi

dt
= −εijk�jLk ≡ f i i, j, k = 1, 2, 3 (22)

with

�j = Lj

Ij
(23)

whereLi = Li and�i = �i are the components of the angular momentum vector and
the angular velocity vector in theith principal direction, respectively, and theIi is the
eigenvalue of the tensor of inertia of an asymmetrical top along with theith principal axis,
as usual.

Let us now look for symmetries of the equations of motion. With this purpose in mind,
multiply the angular momentum by some constant factorλ. This operation introduces
a λ2 factor in the right-hand side of the equation of motion (22). The same result is
achieved in the left-hand side of the equation if, in addition, time is multiplied by the
inverse factorλ−1. These operations performed simultaneously constitute a finite symmetry
transformation for (22). One can deal with an infinitesimal version of it by considering
λ = 1 + ζ infinitesimally close to one, to get the transformation

δLi = ζLi δt = −ζ t. (24)

Note that a transformation such as (24) may equivalently be written as (see, for instance
[16])

ηi = ζ(Li + tεijk�jLk) (25)

leaving time invariant. It is now a straightforward matter to check that the transformation
defined by (25) is, in fact, a symmetry transformation for (22) because it satisfies (9). Note
that ηi also satisfies (18), and consequently may, in principle, be used to define a Poisson
matrix according to (15).

It is well known thatC1 andC2 given by

C1 = (L1)2 + (L2)2 + (L3)2 (26)

and

C2 = (L1)2

2I1
+ (L2)2

2I2
+ (L3)2

2I3
(27)
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are constants of motion for the dynamics generated by (22). We have already seen that the
Hamiltonian for any system must be a constant of motion. Therefore,C1 andC2 are, in
principle, possible Hamiltonians for the top.

The deformations ofC1 andC2 alongηi do not vanish, in fact,

K1 ≡ ∂C1

∂Li
ηi = 2C1 (28)

and

K2 ≡ ∂C2

∂Li
ηi = 2C2. (29)

We have thus found two inequivalent Hamiltonian formulations for the top, defined by the
Poisson matricesJ ij

1 andJ
ij

2 and the HamiltoniansH1 andH2 given by

J
ij

1 = 1

K1
(f iηj − f jηi) (30)

H1 = C1 (31)

J
ij

2 = 1

K2
(f iηj − f jηi) (32)

and

H2 = C2. (33)

Note that the choice of a HamiltonianH as an arbitrary functionH = H(C1, C2) is also
possible provided the proper normalization factorK is used in the Poisson matrixJ ij . In
this way, we have constructed infinitely many Hamiltonian structures for Euler’s top.

Example 3. Radial forces. This example considers non-potential radial forces defined by

f i = xi+3 f i+3 = Fxi F = F(r2, ṙ2, r · ṙ) i = 1, 2, 3. (34)

To construct a Hamiltonian structure, the Hamiltonian may be chosen to be the third
component of the (conserved) angular momentum vector, while the symmetry transformation
is, for instance, a rotation around the first axis. This example clearly shows the ambiguity
which exists to choose both the Hamiltonian and the Poisson matrix.

Example 4. Korteweg–de Vries equation. The equation of motion is

ut = −uux − uxxx ≡ f. (35)

We are now going to construct a symmetry transformation for it. Take any solution of
equation (35) and define a new set of variablesu′, x ′, andt ′ by multiplying the old variables
u, x, t by factorsλ−2, λ, λ3, respectively. This operation simply produces an overallλ5

factor in the equation, which means that the new set of variables solves the same equation
which the old variables satisfy. We have thus constructed a finite symmetry transformation
for the Korteweg–de Vries equation. The infinitesimal symmetry associated with it may be
written takingλ = 1 + ζ , infinitesimally close to one

δu = −2ζu δx = ζx δt = 3ζ t (36)

or, equivalently,

η = ζ(−2u− xux + 3t (uux + uxxx)) (37)

leaving x and t unchanged [16]. It is now a straightforward matter to prove thatη

is an infinitesimal symmetry transformation for (35) because it satisfies the symmetry
(perturbation) equation (9). We remark thatη satisfies condition (18) and therefore, it
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can be used to construct a Poisson matrix. One possible choice for the Hamiltonian density
is u2. The HamiltonianH

H =
∫
u2 dx (38)

is a constant of motion, i.e. its time derivative vanishes when the usual assumptions about
the behaviour of the fields at spatial infinity are adopted. In fact, the time derivative of the
Hamiltonian can be written as the integral of a total spatial divergence (a partial derivative
with respect tox, in our case) when the equation of motion (35) is taken into account.

One gets that the deformationK of H alongη is non-vanishing. We can easily see that
the functional derivative ofH in the η direction is

K ≡
∫

δH

δu(x)
η(x) dx = −3ζH (39)

as it can be obtained by direct computation, or by taking advantage of the new variables
defined by multiplying the old ones by powers ofλ as we have already done above.

Therefore, one Poisson structure is given by

J(x, y) = 1

K
(f (x)η(y)− f (y)η(x)). (40)

The equation of motion can now be written in Hamiltonian form

ut = [u,H ] (41)

where the field theoretical Poisson bracket is defined, as usual, in terms of functional
derivatives by

[A,B] ≡
∫

δA

δu(x)
J(x, y)

δB

δu(y)
dx dy. (42)

Note that other Hamiltonian densitiesH ′ can be used as well, in conjunction with the same
symmetry vectorη, provided the corresponding deformationsK ′ be used in the definition
of the new Poisson matrixJ ′(x, y).

Example 5. Nonlinear Schr¨odinger equations. The equations of motion are

iψt + ψxx + ψ2ψ∗ = 0 (43)

and its complex conjugate. One possible non-standard Hamiltonian density isψψ∗, and the
symmetry vectors are

η = −ψ − xψx + 2t (ψxx + ψ2ψ∗) (44)

and its complex conjugate. This Hamiltonian structure appears to be new.
Even though most of the examples presented here have time-dependent symmetry

vectorsηa, the Poisson matrices constructed out of them through relation (15) are, in fact,
time-independent. This is so because the time-dependent part of each symmetry vector is
(in our examples) proportional to the vectorf a and therefore, no time-dependence appears
in Jab due to the antisymmetric product in (15). Furthermore, there are other systems for
which a Poisson structure may be constructed using time-independent symmetry vectorsηa,
such as the one considered in the third example.

We have constructed Hamiltonian structures for several systems, starting from the
equations of motion only. Some of these structures, have singular Poisson matrices. One
way to increase the rank of the Poisson matrix, without altering any other of its properties,
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is the following. Assume we can find two new time-independent symmetry vectorsη2 and
η3 such that the Lie derivatives of the HamiltonianH along them vanish, i.e.

∂H

∂xa
ηa2 = ∂H

∂xa
ηa3 = 0 (45)

and that the Lie derivatives ofη2 alongη3, as well as those ofη2 andη3 alongη1 (or η0),
vanish. Then, the new Poisson matrixJab

1 defined by

Jab
1 = Jab + ηa2η

b
3 − ηa3η

b
2 (46)

satisfies all of the requirements which define a Poisson matrix (2), (4), and even the non-
linear Jacobi identity (3), and its rank is equal to four. This procedure can be repeated at
will, producing an increase of two units in the rank of the Poisson matrix each time that it
is performed. (Note that this construction clearly shows that the Poisson bracket structure
is not uniquely determined by the dynamics.) If, eventually, one gets a regular Poisson
matrix, the method presented here may constitute an alternative to construct a Lagrangian
description of the system (1), yielding a novel, symmetry based, approach to the classical
inverse problem of the calculus of variations [18–22].

Note that the choice of the symmetry vector (η0 or η1) needed to define the Poisson
matrix is determined solely by the requirement of getting a non-vanishingK, givenH . We
have used in the examples both time-dependent and time-independent symmetry vectors,
to illustrate different possibilities. Sometimes, there may be several adequate choices of
symmetry vectors for a givenH , producing different Hamiltonian formulations for the same
system. We remark that singular Poisson matrices are present in Dirac’s construction of
Hamiltonian structures, as we have already mentioned above. We are currently investigating
the possibility of applying this method, which naturally leads to singular Poisson matrices,
to deal with gauge and constrained systems, as an alternative to Dirac’s method when no
Lagrangian is available. We are also studying whether it is possible to obtain constants
of the motion of the system at hand as Casimir functions of the singular Poisson matrix
constructed here.
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